美しい公式

『美しい公式』解答



◆大阪大学理学部研究生の河野 進さんからの解答。

私が趣味で作った公式集のようなものをお送りします。
よく知られている事ばかりかも知れませんし、間違えや曖昧な点も多い事と思いますが、
関連する事などを含めて指摘していただければ嬉しいです。
AMS-LaTeX のファイルです。
 
 (1.0) はヒルゼブルフの教科書に載っていた2項係数の拡張
    の方法です。n を不定元としても定義できます。

 (1.1)  は  (1.4) の系ですが先に気付いて、このような証明
    を付けましたが、後にもっと一般的な結果 (1.4) が知
    られている事を先輩に教えて貰いました。

\documentstyle[12pt]{amsart}
\setlength{\textwidth}{6.4in}
\setlength{\oddsidemargin}{0in}
\setlength{\evensidemargin}{0in}
\setlength{\topmargin}{-1.0in}
\setlength{\headheight}{0.7in}
\setlength{\textheight}{9.0in}
%
\font\sy=cmsy10 scaled 1200
\font\bsy=cmbsy10 scaled 1200
\font\bit=cmbxti10 scaled 1200
%
\renewcommand{\normalbaselines}{\baselineskip20pt
 \lieskip3pt \lineskiplimit3pt}
%
%\renewcommand{\qedsymbol}{q.e.d.}
%
%\def\endpf{\endtrivlist}
%\def\qed{\RIfM@\else\unskip\nobreak\hfill\qedsymbol}
%
\newcommand{\BZ}{\Bbb{Z}}
\newcommand{\BR}{\Bbb{R}}
\newcommand{\BC}{\Bbb{C}}
\setlength{\parindent}{2em}
%
\begin{document}
\baselineskip = 7mm


{\bf Definition 1.0.} Let $k$ be an integer. Then we set
$$\binom{n}{k} = \left\{ 
  \begin{array}{ll} 
    n(n-1)\cdots (n-k+1)/k! & (k > 0), \\ 
	\noalign{\vskip0.1cm}
    1 & (k = 0), \\ 
	\noalign{\vskip0.1cm}
    0 & (k < 0).
	\end{array} \right.$$

\vspace*{3ex}

\noindent
(1.1)  \begin{it} Let $n$ and $k$ be integers with 
$n\geq k > 0$. Then \end{it}
$$\sum_{i=1}^{n} (-1)^{n-i} \binom{n}{i}i^{k} = \left\{ 
  \begin{array}{ll} 
     0 & (n > k), \\ 
	\noalign{\vskip0.1cm}
     n! \hspace{1ex} (= k!) & (n = k).
	\end{array} \right.$$

\vspace*{2ex}

Proof. \hspace{.1cm}  Set the polynomials $f_{j}(x) \in \BZ [x]$ 
($0 \leq j \leq n$) inductively by
$$f_{0}(x) = (x-1)^{n}, 
f_{j+1}(x) = x\cdot (\frac{d}{dx}f_{j})(x) \hspace{.2cm} 
(0 \leq j < n).$$
Then 
 $f_{j}(x) = \sum_{i=1}^{n}(-1)^{n-i}\binom{n}{i}i^{j}x^{i}$ 
 and $f_{j}(1) =$ $\sum_{i=1}^{n}(-1)^{n-i}\binom{n}{i}i^{j}$ 
 ($0 < j \leq n$).  On the other hand, it is shown by the 
induction with respect to $j$ that there exists $g_{j}(x) \in$ 
$\BZ [x]$ with 

\noindent
\hspace*{2.4cm}
 $f_{j}(x) = n(n-1)\cdots (n-j+1)x^{j}(x-1)^{n-j} 
+(x-1)^{n-j+1}g_{j}(x)$. 

\noindent
Thus 

\noindent
\hspace*{2.9cm}
$\sum_{i=1}^{n} (-1)^{n-i} \binom{n}{i}i^{k} = f_{k}(1) = 
 n(n-1)\cdots (n-k+1)0^{n-k}$. 

\noindent
This implies (1.1). \hspace{11.6cm} q.e.d.   

\vspace*{3ex}

\noindent
(1.2)  \begin{it} Let $n \geq 0$ be an integer.  
 Then, in the polynomial ring $\BZ [x]$, following 
 equalities hold. \end{it} 

\noindent
(1) \hspace{.5cm} 
 $\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i}
\sum_{j=0}^{i}\binom{i}{j}x^{j}  
 = \sum_{i=0}^{n}\binom{n}{i}\sum_{j=0}^{i}
(-1)^{i-j}\binom{i}{j}x^{j} = x^{n}$.  


\noindent
(2) \hspace{.5cm} 
 $\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i}
\sum_{j=0}^{i}\binom{i}{j}x^{n-i+j} 
 = \sum_{i=0}^{n}\binom{n}{i}\sum_{j=0}^{i}
(-1)^{i-j}\binom{i}{j}x^{i} = 1$.  

\noindent
(3) \hspace{.5cm} 
 $\sum_{i=0}^{n}\binom{n}{i}\sum_{j=0}^{i}
 \binom{i}{j}x^{j} = \sum_{k=0}^{n}2^{n-k}\binom{n}{k}x^{k}$.  

\noindent
(4) \hspace{.5cm} 
 $\sum_{i=0}^{n}\binom{n}{i}
\sum_{j=0}^{i}\binom{i}{j}x^{n-i+j}  
 = \sum_{i=0}^{n}\binom{n}{i}\sum_{j=0}^{i}
 \binom{i}{j}x^{i} = \sum_{k=0}^{n}2^{k}\binom{n}{k}x^{k}$.  

\noindent
(5) \hspace{.5cm} 
 $\sum_{i=0}^{n}(-2)^{n-i}\binom{n}{i}
\sum_{j=0}^{i}\binom{i}{j}x^{j}  
 = \sum_{i=0}^{n}\binom{n}{i}\sum_{j=0}^{i}
(-2)^{i-j}\binom{i}{j}x^{j} 
 = \sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}x^{k}$.  

\noindent
(6) \hspace{.5cm} 
 $\sum_{i=0}^{n}(-2)^{n-i}\binom{n}{i}
\sum_{j=0}^{i}\binom{i}{j}x^{n-i+j}  
 = \sum_{i=0}^{n}\binom{n}{i}\sum_{j=0}^{i}
(-2)^{i-j}\binom{i}{j}x^{i} 
 = \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}x^{k}$.  

\vspace*{2ex}

Proof. \hspace{.1cm} Set $f(x, y, z) = (x+y+z)^{n} 
 \in \BZ [x, y, z]$.  Then 

\noindent
\hspace*{2.2cm}
$f(x, y, z) = \sum_{i=0}^{n}\binom{n}{i}(x+y)^{i}z^{n-i} 
 = \sum_{i=0}^{n}\binom{n}{i}z^{n-i}\sum_{j=0}^{i}
 \binom{i}{j}x^{j}y^{i-j}$. 

\noindent
Now, (1) is obtained by $f(x, \pm 1, \mp 1)$, 
 (2) is obtained by $f(x, 1, -x) =$ $f(x, -x, 1)$, 
 (3) is obtained by $f(x, 1, 1)$, 
 (4) is obtained by $f(x, 1, x) =$ $f(x, x, 1)$, 
 (5) is obtained by $f(x, 1, -2) =$ $f(x, -2, 1)$, 
 and (6) is obtained by $f(x, 1, -2x) =$ $f(x, -2x, 1)$. 
\hspace{3.6cm} q.e.d. 

\vspace*{3ex}

{\bf Definition 1.3.} Let $K$ be a finite set with  $k$ 
 elements, and  $N$  a  finite set with  $n$  elements. 
 Then, $M_{k,n}$  denotes the number of elements of the 
 finite set 

\noindent
\hspace*{5.3cm}
 $\{ f\colon K \rightarrow N | f$ is a surjection$\}$. 

\vspace*{3ex}

\noindent
(1.4) \hspace{1.5cm} $M_{k,n} = 
 \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i}i^{k}$.    

\vspace*{2ex}

Proof. \hspace{.1cm} Since the number of the elements of the 
 finite set $\{ f\colon K \rightarrow N\}$ is equal to 
 $n^{k}$, we obtain 
 $i^{k} = \sum_{j=0}^{i}\binom{i}{j}M_{k,j} \hspace{.2cm} 
 (i\geq 0)$. 
 It follows from (1.2) (1) that

\noindent
\hspace*{2.1cm} $\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i}i^{k} 
 = \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i}
\sum_{j=0}^{i}\binom{i}{j}M_{k,j} = M_{k,n}$. \hspace{2.1cm}
 q.e.d.

\vspace*{3ex}

Following three assertions (1.5)-(1.7) are slightly modified 
version of that of [3]. 

\vspace*{3ex}

\noindent
(1.5)  \begin{it} Let $n \geq 0$ be an integer.  
 Then, in the polynomial ring $\BZ [x]$, following 
 equalities hold. \end{it} 

\noindent
(1) \hspace{1ex} 
 $\sum_{i=0}^{n}(-1)^{n-i}\binom{2n}{n-i}
\sum_{j=0}^{i}\binom{i}{j}x^{j} 
 = \sum_{k=0}^{n}(-1)^{n-k}\binom{2n-k-1}{n-k}x^{k}$. 

\noindent
(2) \hspace{1ex} 
 $\sum_{i=0}^{n}(-1)^{n-i}(\binom{2n-1}{n-i}-\binom{2n-1}{n-i-1})
\sum_{j=0}^{i}\binom{i}{j}x^{j} 
 = \sum_{k=0}^{n}(-1)^{n-k}(\binom{2n-k-2}{n-k}
 -\binom{2n-k-2}{n-k-1})x^{k}$.  

\noindent
(3) \hspace{1ex} 
 $\sum_{i=0}^{n}(-1)^{n-i}\binom{2n-i-1}{n-i}
\sum_{j=0}^{i}(-1)^{i-j}\binom{i}{j}x^{j} 
 = \sum_{k=0}^{n}(-1)^{n-k}\binom{2n}{n-k}x^{k}$. 

\noindent
(4) \hspace{1ex} 
 $\sum_{i=0}^{n}(-1)^{n-i}(\binom{2n-i-2}{n-i}-\binom{2n-i-2}{n-i-1})
\sum_{j=0}^{i}(-1)^{i-j}\binom{i}{j}x^{j}$ 

\noindent
\hspace*{6.1cm}
 $= \sum_{k=0}^{n}(-1)^{n-k}(\binom{2n-1}{n-k}
 -\binom{2n-1}{n-k-1})x^{k}$.  

\vspace*{2ex}

Proof. \hspace{.1cm}  If  $j > l \geq 0$, then 

\noindent
\hspace*{1.4cm}
$\sum_{i=j}^{n}(-1)^{n-i}\binom{2n-l}{n-i}\binom{i-l}{j-l}$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}(\binom{2n-l-1}{n-i}+\binom{2n-l-1}{n-i-1})
\binom{i-l}{j-l}$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}\binom{2n-l-1}{n-i}\binom{i-l}{j-l} 
 +\sum_{i=j}^{n-1}(-1)^{n-i}\binom{2n-l-1}{n-i-1}\binom{i-l}{j-l}$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}\binom{2n-l-1}{n-i}\binom{i-l-1}{j-l-1}$.   

\noindent
This implies that 

\noindent
\hspace*{1.4cm}
$\sum_{i=j}^{n}(-1)^{n-i}\binom{2n}{n-i}\binom{i}{j}$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}\binom{2n-j}{n-i}\binom{i-j}{0}$ 
 
 $= \sum_{i=j}^{n}(-1)^{n-i}(\binom{2n-j-1}{n-i}
 +\binom{2n-j-1}{n-i-1})$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}\binom{2n-j-1}{n-i} 
 +\sum_{i=j}^{n-1}(-1)^{n-i}\binom{2n-j-1}{n-i-1}$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}\binom{2n-j-1}{n-i} 
 -\sum_{i=j+1}^{n}(-1)^{n-i}\binom{2n-j-1}{n-i} 
 = (-1)^{n-j}\binom{2n-j-1}{n-j}$.  

\noindent
Thus we obtain 

\noindent
\hspace*{.1cm}
 $\sum_{i=0}^{n}(-1)^{n-i}\binom{2n}{n-i}
\sum_{j=0}^{i}\binom{i}{j}x^{j} 
 = \sum_{j=0}^{n}(\sum_{i=j}^{n}(-1)^{n-i}\binom{2n}{n-i}
\binom{i}{j})x^{j}
 = \sum_{j=0}^{n}(-1)^{n-j}\binom{2n-j-1}{n-j}x^{j}$. 

\noindent
This proves (1). 
 
If  $j > l \geq 0$, then 

\noindent
\hspace*{1.4cm}
 $\sum_{i=j}^{n}(-1)^{n-i}(\binom{2n-l-1}{n-i} 
-\binom{2n-l-1}{n-i-1})\binom{i-l}{j-l}$ 

 $=  \sum_{i=j}^{n}(-1)^{n-i}(\binom{2n-l-2}{n-i} 
-\binom{2n-l-2}{n-i-1}+\binom{2n-l-2}{n-i-1} 
-\binom{2n-l-2}{n-i-2})\binom{i-l}{j-l}$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}(\binom{2n-l-2}{n-i} 
-\binom{2n-l-2}{n-i-1})\binom{i-l}{j-l}
 +\sum_{i=j}^{n-1}(-1)^{n-i}(\binom{2n-l-2}{n-i-1} 
-\binom{2n-l-2}{n-i-2})\binom{i-l}{j-l}$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}(\binom{2n-l-2}{n-i} 
-\binom{2n-l-2}{n-i-1})\binom{i-l-1}{j-l-1}$.  

\noindent
This implies that 

\noindent
\hspace*{1.4cm}
 $\sum_{i=j}^{n}(-1)^{n-i}(\binom{2n-1}{n-i} 
-\binom{2n-1}{n-i-1})\binom{i}{j}$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}(\binom{2n-j-1}{n-i} 
-\binom{2n-j-1}{n-i-1})\binom{i-j}{0}$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}(\binom{2n-j-2}{n-i} 
-\binom{2n-j-2}{n-i-1}) 
 +\sum_{i=j}^{n-1}(-1)^{n-i}(\binom{2n-j-2}{n-i-1} 
-\binom{2n-j-2}{n-i-2})$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}(\binom{2n-j-2}{n-i} 
-\binom{2n-j-2}{n-i-1}) 
 -\sum_{i=j+1}^{n}(-1)^{n-i}(\binom{2n-j-2}{n-i} 
-\binom{2n-j-2}{n-i-i})$  

 $= (-1)^{n-j}(\binom{2n-j-2}{n-j} -\binom{2n-j-2}{n-j-1})$.  

\noindent
Thus we obtain 

\noindent
\hspace*{1.4cm}
$\sum_{i=0}^{n}(-1)^{n-i}(\binom{2n-1}{n-i} 
-\binom{2n-1}{n-i-1})\sum_{j=0}^{i}\binom{i}{j}x^{j}$ 

 $= \sum_{j=0}^{n}(\sum_{i=j}^{n}(-1)^{n-i}(\binom{2n-1}{n-i} 
-\binom{2n-1}{n-i-1})\binom{i}{j})x^{j}$ 

 $= \sum_{j=0}^{n}(-1)^{n-j}(\binom{2n-j-2}{n-j}
 -\binom{2n-j-2}{n-j-1})x^{j}$. 

\noindent
This proves (2). 
 
It follows from (1.2) (1) and (1.5) (1) that 

\noindent
\hspace*{1.4cm}
 $\sum_{i=0}^{n}(-1)^{n-i}\binom{2n-i-1}{n-i}
\sum_{j=0}^{i}(-1)^{i-j}\binom{i}{j}x^{j}$

 $= \sum_{k=0}^{n}(-1)^{n-k}\binom{2n}{n-k}
\sum_{i=0}^{k}\binom{k}{i}\sum_{j=0}^{i}(-1)^{i-j}
\binom{i}{j}x^{j}$ 

 $= \sum_{k=0}^{n}(-1)^{n-k}\binom{2n}{n-k}x^{k}$. 

\noindent
This proves (3).  Similarly, (1.2) (1) and (1.5) (2) 
 are used to prove (4). \hspace{2.0cm} q.e.d. 

\vspace*{3ex}

\noindent
(1.6)  \begin{it} Let $n \geq 0$ be an integer.  
 Then, in the polynomial ring $\BZ [x]$, following 
 equalities hold. \end{it} 

\noindent
(1) \hspace{1.2cm} 
 $\sum_{i=0}^{n}(-1)^{n-i}\binom{2n}{n-i}
\sum_{j=0}^{i}(\binom{i+j}{i-j}+\binom{i+j-1}{i-j-1})x^{j} 
 = x^{n}$. 

\noindent
(2) \hspace{1.2cm} 
 $\sum_{i=0}^{n}(\binom{n+i}{n-i}+\binom{n+i-1}{n-i-1})
\sum_{j=0}^{i}(-1)^{i-j}\binom{2i}{i-j}x^{j} 
 = x^{n}$. 

\noindent
(3) \hspace{1.2cm} 
 $\sum_{i=0}^{n}(-1)^{n-i}(\binom{2n-1}{n-i}-\binom{2n-1}{n-i-1})
\sum_{j=0}^{i}\binom{i+j-1}{i-j}x^{j} = x^{n}$.  

\noindent
(4) \hspace{1.2cm} 
 $\sum_{i=0}^{n}\binom{n+i-1}{n-i}
\sum_{j=0}^{i}(-1)^{i-j}(\binom{2i-1}{i-j}-\binom{2i-1}{i-j-1})x^{j} 
 = x^{n}$.  

\noindent
(5) \hspace{1.2cm} 
 $\sum_{i=0}^{n}(-1)^{n-i}\binom{2n-i-1}{n-i}
\sum_{j=0}^{i}(\binom{j}{i-j}+\binom{j-1}{i-j-1})x^{j} = x^{n}$. 

\noindent
(6) \hspace{1.2cm} 
 $\sum_{i=0}^{n}(\binom{i}{n-i}+\binom{i-1}{n-i-1})
\sum_{j=0}^{i}(-1)^{i-j}\binom{2i-j-1}{i-j}x^{j} = x^{n}$. 

\noindent
(7) \hspace{1.2cm} 
 $\sum_{i=0}^{n}(-1)^{n-i}(\binom{2n-i-2}{n-i}-\binom{2n-i-2}{n-i-1})
\sum_{j=0}^{i}\binom{j-1}{i-j}x^{j} = x^{n}$. 

\noindent
(8) \hspace{1.2cm} 
 $\sum_{i=0}^{n}\binom{i-1}{n-i}
\sum_{j=0}^{i}(-1)^{i-j}(\binom{2i-j-2}{i-j}-\binom{2i-j-2}{i-j-1})
x^{j} = x^{n}$. 

\vspace*{2ex}

Proof. \hspace{0.1cm}  Since 

 \noindent
\hspace*{1.4cm}
$\sum_{i=j}^{n}(-1)^{n-i}
\binom{2n}{n-i}(\binom{i+j}{i-j}+\binom{i+j-1}{i-j-1})$

 $= \sum_{i=j}^{n}(-1)^{n-i}(\binom{2n-1}{n-i}+\binom{2n-1}{n-i-1})
(\binom{i+j}{i-j}+\binom{i+j-1}{i-j-1})$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}\binom{2n-1}{n-i}
(\binom{i+j}{i-j}+\binom{i+j-1}{i-j-1}) 
 +\sum_{i=j}^{n-1}(-1)^{n-i}\binom{2n-1}{n-i-1}
(\binom{i+j}{i-j}+\binom{i+j-1}{i-j-1})$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}\binom{2n-1}{n-i}
(\binom{i+j}{i-j}+\binom{i+j-1}{i-j-1}) 
 -\sum_{i=j+1}^{n}(-1)^{n-i}\binom{2n-1}{n-i}
(\binom{i+j-1}{i-j-1}+\binom{i+j-2}{i-j-2})$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}\binom{2n-1}{n-i}
(\binom{i+j-1}{i-j}+\binom{i+j-2}{i-j-1})$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}\binom{2n-2j}{n-i}
(\binom{i-j}{i-j}+\binom{i-j-1}{i-j-1})$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}\binom{2n-2j}{n-i}
 +\sum_{i=j+1}^{n}(-1)^{n-i}\binom{2n-2j}{n-i}$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}\binom{2n-2j}{n-i}
 -\sum_{i=j}^{n-1}(-1)^{n-i}\binom{2n-2j}{n-i-1}$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}(\binom{2n-2j}{n-i}
-\binom{2n-2j}{n-i-1})$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}(\binom{2n-2j-1}{n-i}
-\binom{2n-2j-1}{n-i-1}+\binom{2n-2j-1}{n-i-1}
-\binom{2n-2j-1}{n-i-2})$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}(\binom{2n-2j-1}{n-i}
-\binom{2n-2j-1}{n-i-1})
+\sum_{i=j}^{n-1}(-1)^{n-i}(\binom{2n-2j-1}{n-i-1}
-\binom{2n-2j-1}{n-i-2})$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}(\binom{2n-2j-1}{n-i}
-\binom{2n-2j-1}{n-i-1})
-\sum_{i=j+1}^{n}(-1)^{n-i}(\binom{2n-2j-1}{n-i}
-\binom{2n-2j-1}{n-i-1})$ 

 $= (-1)^{n-j}(\binom{2n-2j-1}{n-j}
-\binom{2n-2j-1}{n-j-1}) = 0^{n-j}$, 

\noindent
we obtain 

\noindent
\hspace*{1.4cm}
 $\sum_{i=0}^{n}(-1)^{n-i}\binom{2n}{n-i}
\sum_{j=0}^{i}(\binom{i+j}{i-j}+\binom{i+j-1}{i-j-1})x^{j}$ 

 $= \sum_{j=0}^{n}(\sum_{i=j}^{n}(-1)^{n-i}\binom{2n}{n-i}
(\binom{i+j}{i-j}+\binom{i+j-1}{i-j-1}))x^{j}
 = x^{n}$. 

\noindent
This proves (1). 

Since 

 \noindent
\hspace*{1.4cm}
$\sum_{i=j}^{n}(-1)^{n-i}(\binom{2n-1}{n-i}
-\binom{2n-1}{n-i-1})\binom{i+j-1}{i-j}$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}(\binom{2n-1}{n-i}
-\binom{2n-1}{n-i-1})\binom{i+j}{i-j}
-\sum_{i=j+1}^{n}(-1)^{n-i}(\binom{2n-1}{n-i}
-\binom{2n-1}{n-i-1})\binom{i+j-1}{i-j-1}$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}(\binom{2n-1}{n-i}
-\binom{2n-1}{n-i-1})\binom{i+j}{i-j}
+\sum_{i=j}^{n-1}(-1)^{n-i}(\binom{2n-1}{n-i-1}
-\binom{2n-1}{n-i-2})\binom{i+j}{i-j}$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}(\binom{2n-1}{n-i}-\binom{2n-1}{n-i-1}
+\binom{2n-1}{n-i-1}-\binom{2n-1}{n-i-2})\binom{i+j}{i-j}$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}(\binom{2n}{n-i}-\binom{2n}{n-i-1})
\binom{i+j}{i-j}$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}\binom{2n}{n-i}\binom{i+j}{i-j} 
-\sum_{i=j}^{n-1}(-1)^{n-i}\binom{2n}{n-i-1}\binom{i+j}{i-j}$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}\binom{2n}{n-i}\binom{i+j}{i-j} 
+\sum_{i=j+1}^{n}(-1)^{n-i}\binom{2n}{n-i}\binom{i+j-1}{i-j-1}$ 

 $= \sum_{i=j}^{n}(-1)^{n-i}\binom{2n}{n-i}(\binom{i+j}{i-j} 
+\binom{i+j-1}{i-j-1}) = 0^{n-j}$ 

\noindent
by the proof above, we obtain 

\noindent
\hspace*{1.4cm}
 $\sum_{i=0}^{n}(-1)^{n-i}(\binom{2n-1}{n-i}-\binom{2n-1}{n-i-1})
\sum_{j=0}^{i}\binom{i+j-1}{i-j}x^{j}$ 
 
 $= \sum_{j=0}^{n}(\sum_{i=0}^{n}(-1)^{n-i}
(\binom{2n-1}{n-i}-\binom{2n-1}{n-i-1})
\binom{i+j-1}{i-j})x^{j} = x^{n}$. 

\noindent
This proves (3).  

If $j > 0$, then 

\noindent
\hspace*{1.4cm}
 $\sum_{i=j}^{n}(-1)^{n-i}\binom{2n-i-1}{n-i}
(\binom{j}{i-j}+\binom{j-1}{i-j-1})$ 

 $= \sum_{i=j}^{2j}(-1)^{n-i}\binom{2n-i-1}{n-i}
\binom{j}{i-j}+\sum_{i=j+1}^{2j}(-1)^{n-i}\binom{2n-i-1}{n-i}
\binom{j-1}{i-j-1}$ 

 $= \sum_{i=0}^{j}(-1)^{n-i-j}\binom{2n-i-j-1}{n-i-j}
\binom{j}{i}+\sum_{i=0}^{j-1}(-1)^{n-i-j-1}\binom{2n-i-j-2}{n-i-j-1}
\binom{j-1}{i}$ 

 $= (-1)^{n-j}\sum_{i=0}^{j}\sum_{k=0}^{j-i}(-1)^{i}
\binom{j-i}{k}\binom{2n-2j-1}{n-i-j-k}\binom{j}{i}$ 

\noindent
\hspace*{2.6cm} $+(-1)^{n-j+1}\sum_{i=0}^{j-1}\sum_{k=0}^{j-i+1}
(-1)^{i}\binom{j-i-1}{k}\binom{2n-2j-1}{n-i-j-1-k}\binom{j-1}{i}$ 

 $= (-1)^{n-j}\sum_{i=0}^{j}\sum_{k=0}^{i}(-1)^{j-i}
\binom{i}{k}\binom{2n-2j-1}{n-j-(j-i+k)}\binom{j}{i}$ 

\noindent
\hspace*{2.6cm} $-(-1)^{n-j}\sum_{i=0}^{j-1}\sum_{k=0}^{i}
(-1)^{j-i+1}\binom{i}{k}\binom{2n-2j-1}{n-j-1-(j-1-i+k)}\binom{j-1}{i}$ 

$= (-1)^{n-j}\binom{2n-2j-1}{n-j} -(-1)^{n-j}\binom{2n-2j-1}{n-j-1}$ 
 \hspace{.3cm} (by (1.2) (2))

 $= 0^{n-j}$.  

\noindent
In the case $j = 0$, 

\noindent
\hspace*{1.4cm}
 $\sum_{i=0}^{n}(-1)^{n-i}\binom{2n-i-1}{n-i}
(\binom{0}{i}+\binom{-1}{i-1}) 
 = (-1)^{n}(\binom{2n-1}{n}-\sum_{i=1}^{n}\binom{2n-i-1}{n-i})
= 0^{n}$. 

\noindent
Thus we obtain 

\noindent
\hspace*{1.4cm}
 $\sum_{i=0}^{n}(-1)^{n-i}\binom{2n-i-1}{n-i}
\sum_{j=0}^{i}(\binom{j}{i-j}+\binom{j-1}{i-j-1})x^{j}$ 

 $= \sum_{j=0}^{n}(\sum_{i=j}^{n}(-1)^{n-i}\binom{2n-i-1}{n-i}
(\binom{j}{i-j}+\binom{j-1}{i-j-1}))x^{j} = x^{n}$. 

\noindent
This proves (5).  

If $j > 0$, then 

\noindent
\hspace*{1.4cm}
 $\sum_{i=j}^{n}(-1)^{n-i}(\binom{2n-i-2}{n-i}
-\binom{2n-i-2}{n-i-1})\binom{j-1}{i-j}$ 

 $= \sum_{i=j}^{2j-1}(-1)^{n-i}(\binom{2n-i-2}{n-i} 
 -\binom{2n-i-2}{n-i-1})\binom{j-1}{i-j}$ 

 $= \sum_{i=0}^{j-1}(-1)^{n-i-j}(\binom{2n-i-j-2}{n-i-j}
 -\binom{2n-i-j-2}{n-i-j-1})\binom{j-1}{i}$ 

 $= \sum_{i=0}^{j-1}\sum_{k=0}^{j-i-1}(-1)^{n-i-j}
\binom{j-i-1}{k}(\binom{2n-2j-1}{n-i-j-k} 
 -\binom{2n-2j-1}{n-i-j-1-k})\binom{j-1}{i}$ 

 $= (-1)^{n-j}\sum_{i=0}^{j-1}\sum_{k=0}^{i}(-1)^{j-i-1}
\binom{i}{k}(\binom{2n-2j-1}{n-j-(j-1-j+k)} 
 -\binom{2n-2j-1}{n-j-1-(j-1-i+k)})\binom{j-1}{i}$ 

$= (-1)^{n-j}(\binom{2n-2j-1}{n-j} -\binom{2n-2j-1}{n-j-1})$ 
 \hspace{.3cm} (by (1.2) (2))

 $= 0^{n-j}$.  

\noindent
In the case $j = 0$, 

\noindent
\hspace*{1.4cm}
 $\sum_{i=0}^{n}(-1)^{n-i}(\binom{2n-i-2}{n-i}
-\binom{2n-i-2}{n-i-1})\binom{-1}{i}$ 

 $= \sum_{i=0}^{n}(-1)^{n}(\binom{2n-i-2}{n-i}
-\binom{2n-i-2}{n-i-1})$ 

 $= (-1)^{n}(\sum_{i=0}^{n}\binom{2n-i-2}{n-i}
-\sum_{i=0}^{n-1}\binom{2n-i-2}{n-i-1})$ 

 $= (-1)^{n}(\binom{2n-1}{n}-\binom{2n-1}{n-1})
= 0^{n}$. 

\noindent
Thus we obtain 

\noindent
\hspace*{1.4cm}
 $\sum_{i=0}^{n}(-1)^{n-i}(\binom{2n-i-2}{n-i}
-\binom{2n-i-2}{n-i-1})\sum_{j=0}^{i}\binom{j-1}{i-j})x^{j}$ 

 $= \sum_{j=0}^{n}(\sum_{i=j}^{n}(-1)^{n-i}(\binom{2n-i-2}{n-i}
-\binom{2n-i-2}{n-i-1})\binom{j-1}{i-j-})x^{j} = x^{n}$. 

\noindent
This proves (7). 

 Let  $A = (a_{i,j})$  and 
 $B = (b_{i,j})$  be  $((n+1)\times (n+1))$-matrices defined by 

\noindent
\hspace*{3.8cm} $a_{i,j} = (-1)^{i-j}\binom{2i-2}{i-j}$, 
 $b_{i,j} = \binom{i+j-2}{i-j} + \binom{i+j-3}{i-j-1}$. 

\noindent
 Then (1) implies that $AB = I_{n+1}$, and $B = A^{-1}$. 
 Thus $BA = I_{n+1}$.  This implies (2). 

 Similarly (4), (6) and (8) follows from (3), (5) and (7) 
 respectively.  \hspace{2.0cm} q.e.d. 

\vspace*{3ex}

\noindent
(1.7)  \begin{it} Let $n \geq 0$ be an integer.  
 Then, in the polynomial ring $\BZ [x]$, following 
 equalities hold. \end{it} 

\noindent
(1) \hspace{1.2cm} 
 $\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i}
\sum_{j=0}^{i}(\binom{i+j}{i-j}+\binom{i+j-1}{i-j-1})x^{j} 
 = \sum_{k=0}^{n}(\binom{k}{n-k}+\binom{k-1}{n-k-1})x^{k}$. 

\noindent
(2) \hspace{1.2cm} 
 $\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i}
\sum_{j=0}^{i}\binom{i+j-1}{i-j}x^{j} 
 = \sum_{k=0}^{n}\binom{k-1}{n-k}x^{k}$. 

\noindent
(3) \hspace{1.2cm} 
 $\sum_{i=0}^{n}\binom{n}{i}
\sum_{j=0}^{i}(\binom{j}{i-j}+\binom{j-1}{i-j-1})x^{j} 
 = \sum_{k=0}^{n}(\binom{n+k}{n-k}+\binom{n+k-1}{n-k-1})x^{k}$.  

\noindent
(4) \hspace{1.2cm} 
 $\sum_{i=0}^{n}\binom{n}{i}\sum_{j=0}^{i}\binom{j-1}{i-j}x^{j} 
 = \sum_{k=0}^{n}\binom{n+k-1}{n-k}x^{k}$.  

\noindent
(5) \hspace{1.2cm} 
 $\sum_{i=0}^{n}(\binom{n+i}{n-i}+\binom{n+i-1}{n-i-1})
\sum_{j=0}^{i}(-1)^{i-j}\binom{2i-j-1}{i-j}x^{j} 
= \sum_{k=0}^{n}\binom{n}{k}x^{k}$. 

\noindent
(6) \hspace{1.2cm} 
 $\sum_{i=0}^{n}\binom{n+i-1}{n-i}\sum_{j=0}^{i}(-1)^{i-j}
(\binom{2i-j-2}{i-j}-\binom{2i-j-2}{i-j-1})x^{j} 
= \sum_{k=0}^{n}\binom{n}{k}x^{k}$. 

\noindent
(7) \hspace{1.2cm} 
 $\sum_{i=0}^{n}(\binom{i}{n-i}+\binom{i-1}{n-i-1})
\sum_{j=0}^{i}(-1)^{i-j}\binom{2i}{i-j}x^{j} 
= \sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}x^{k}$. 

\noindent
(8) \hspace{1.2cm} 
 $\sum_{i=0}^{n}\binom{i-1}{n-i}\sum_{j=0}^{i}(-1)^{i-j}
(\binom{2i-1}{i-j}-\binom{2i-1}{i-j-1})x^{j} 
= \sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}x^{k}$. 

\vspace*{2ex}

Proof. \hspace{.1cm}  It follows from (1.5) (1) and (1.6) (2) 
 that we obtain 

\noindent
\hspace*{1.4cm}
 $\sum_{i=0}^{n}(\binom{n+i}{n-i}+\binom{n+i-1}{n-i-1})
\sum_{j=0}^{i}(-1)^{i-j}\binom{2i-j-1}{i-j}x^{j}$ 

 $= \sum_{i=0}^{n}(\binom{n+i}{n-i}+\binom{n+i-1}{n-i-1})
\sum_{k=0}^{i}(-1)^{i-k}\binom{2i}{i-k}
\sum_{j=0}^{k}\binom{k}{j}x^{j} = \sum_{j=0}^{n}\binom{n}{j}x^{j}$. 

\noindent
This proves (5). 
Similarly, (1.5) (2) and (1.6) (4) are used to obtain (6), (1.5) (3) 
 and (1.6) (6) are used to obtain (7), (1.5) (4) and (1.6) (8) 
 are used to obtain (8). 

 It follows from (5) and (1.6) (5) 
 that we obtain 

\noindent
\hspace*{1.4cm}
 $\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i}
\sum_{j=0}^{i}(\binom{j}{i-j}+\binom{j-1}{i-j-1})x^{j}$ 

 $= \sum_{k=0}^{n}(\binom{n+k}{n-k}+\binom{n+k-1}{n-k-1})
\sum_{i=0}^{k}(-1)^{k-i}\binom{2k-i-1}{k-i}
\sum_{j=0}^{i}(\binom{j}{i-j}+\binom{j-1}{i-j-1})x^{j}$ 

$= \sum_{k=0}^{n}(\binom{n+k}{n-k}+\binom{n+k-1}{n-k-1})x^{k}$. 

\noindent
This proves (3).  Similarly, (6) and (1.6) (7) are used to obtain (4), 
 (7) and (1.6) (1) are 
 used to obtain (1), and (8) and (1.6) (3) are used to obtain (2). 
 \hspace{4.4cm} q.e.d.  

\vspace*{3ex}

\noindent
(1.8)  \begin{it} Let $n,k$ and $j$ be integers with $0\leq k\leq n$ 
 and $1\leq j\leq n$. Then, following equalities hold. \end{it} 

\noindent
(1) \hspace{1.2cm} 
 $\sum_{i=0}^{2n-1}(-1)^{i}2^{2n-1-i}\binom{i+1}{2k-1}
\binom{j}{i+1-j} = 0$. 

\noindent
(2) \hspace{1.2cm} 
 $\sum_{i=0}^{2n}(-1)^{i}2^{2n-i}\binom{i+1}{2k}
(\binom{j+1}{i+1-j}+\binom{j}{i-j}) = 0$. 

\vspace*{2ex}

Proof. \hspace{.1cm}  (1) \hspace{.1cm} 
$\sum_{i=0}^{2n-1}(-1)^{i}2^{2n-1-i}\binom{i+1}{2k-1}\binom{j}{i+1-j}$

$= \sum_{i=j-1}^{2j-1}(-1)^{i}2^{2n-1-i}\binom{i+1}{2k-1}
\binom{j}{i+1-j}$ 

$= \sum_{i=0}^{j}(-1)^{j-1-i}2^{2n-j-i}\binom{i+j}{2k-1}
\binom{j}{i}$ 

$= -2^{2n-2j}\sum_{i=0}^{j}\sum_{m=0}^{i}(-2)^{j-i}\binom{i}{m}
\binom{j}{2k-1-m}\binom{j}{i}$ 

$= -2^{2n-2j}\sum_{m=0}^{j}(-1)^{j-m}\binom{j}{m}
\binom{j}{2k-1-m}$ \hspace{.3cm} (by (1.2) (5)) 

$= -2^{2n-2j}\sum_{m=0}^{2k-1}(-1)^{j-m}\binom{j}{m}
\binom{j}{2k-1-m}$ 

$= -2^{2n-2j}(\sum_{m=0}^{k-1}(-1)^{j-m}\binom{j}{m}
\binom{j}{2k-1-m}+\sum_{m=k}^{2k-1}(-1)^{j-m}\binom{j}{m}
\binom{j}{2k-1-m})$ 

$= -2^{2n-2j}(\sum_{m=0}^{k-1}(-1)^{j-m}\binom{j}{m}
\binom{j}{2k-1-m}-\sum_{m=0}^{k-1}(-1)^{j-m}\binom{j}{m}
\binom{j}{2k-1-m}) = 0$. 

(2) \hspace{.1cm} 
 $\sum_{i=0}^{2n}(-1)^{i}2^{2n-i}\binom{i+1}{2k}
(\binom{j+1}{i+1-j}+\binom{j}{i-j})$ 

 $= \sum_{i=j-1}^{2j}(-1)^{i}2^{2n-i}\binom{i+1}{2k}
\binom{j+1}{i+1-j}+\sum_{i=j}^{2j}(-1)^{i}2^{2n-i}
\binom{i+1}{2k}\binom{j}{i-j}$

 $= \sum_{i=0}^{j+1}(-1)^{j+1-i}2^{2n+1-j-i}\binom{j+i}{2k}
\binom{j+1}{i}+\sum_{i=0}^{j}(-1)^{j-i}2^{2n-j-i}
\binom{j+i+1}{2k}\binom{j}{i}$

 $= 2^{2n-2j}(\sum_{i=0}^{j+1}\sum_{m=0}^{i}(-2)^{j+1-i}
\binom{i}{m}\binom{j}{2k-m}\binom{j+1}{i}
+\sum_{i=0}^{j}\sum_{m=0}^{i}(-2)^{j-i}
\binom{i}{m}\binom{j+1}{2k-m}\binom{j}{i})$

 $= 2^{2n-2j}(\sum_{m=0}^{j+1}(-1)^{j+1-m}
\binom{j+1}{m}\binom{j}{2k-m}
+\sum_{m=0}^{j}(-1)^{j-m}
\binom{j}{m}\binom{j+1}{2k-m})$  \hspace{.3cm} (by (1.2) (5))

 $= 2^{2n-2j}(-\sum_{m=0}^{2k}(-1)^{j-m}
\binom{j+1}{m}\binom{j}{2k-m}
+\sum_{m=0}^{2k}(-1)^{j-m}
\binom{j}{m}\binom{j+1}{2k-m})$

 $= 2^{2n-2j}(-\sum_{m=0}^{2k}(-1)^{j-m}
\binom{j+1}{2k-m}\binom{j}{m}
+\sum_{m=0}^{2k}(-1)^{j-m}
\binom{j}{m}\binom{j+1}{2k-m}) = 0$. \hspace{1.8cm} q.e.d. 

\vspace*{3ex}

\noindent
(1.9)  \begin{it} Let $n$ and $i$ be integers with $n > 0$. 
 Then, following equalities hold. \end{it} 

\noindent
(1) \hspace{1.2cm} 
 $\binom{n}{i+1} = -(-1)^{n}\binom{0}{i+1-n} 
 +\sum_{j=0}^{n-1}(\binom{n-j}{j}+\binom{n-1-j}{j-1})
\binom{j}{i+1-j}$. 

\noindent
(2) \hspace{1.2cm} 
 $\binom{n}{i+1} = (-1)^{n}\binom{0}{i+1-n} 
 +\sum_{j=0}^{n-1}\binom{n-1-j}{j}(\binom{j+1}{i+1-j} 
+\binom{j}{i-j})$. 

\vspace*{2ex}

Proof. \hspace{.1cm}  The proof in the case $n = 1$, $2$ are 
 not difficult.  Suppose $m \geq 2$ and (1.9) is true for 
 $1\leq n\leq m$. Then 

\noindent
\hspace*{1.4cm} $\binom{m+1}{i+1} = \binom{m}{i+1} +\binom{m-1}{i} 
 +\binom{m-1}{i-1}$ 

 $= -(-1)^{m}\binom{0}{i+1-m} +(-1)^{m}\binom{0}{i+1-m}
 +(-1)^{m}\binom{0}{i-m} 
 +\sum_{j=0}^{m-1}(\binom{m-j}{j}+\binom{m-1-j}{j-1})
\binom{j}{i+1-j}$ 

\noindent
\hspace*{1.0cm}
 $+\sum_{j=0}^{m-2}(\binom{m-1-j}{j}+\binom{m-2-j}{j-1})
\binom{j}{i-j} 
 +\sum_{j=0}^{m-2}(\binom{m-1-j}{j}+\binom{m-2-j}{j-1})
\binom{j}{i-1-j}$

 $= (-1)^{m}\binom{0}{i-m} 
 +\sum_{j=0}^{m-1}(\binom{m-j}{j}+\binom{m-1-j}{j-1})
\binom{j}{i+1-j} 
 +\sum_{j=0}^{m-2}(\binom{m-1-j}{j}+\binom{m-2-j}{j-1})
\binom{j+1}{i-j}$

 $= (-1)^{m}\binom{0}{i-m} 
 +\sum_{j=0}^{m-1}(\binom{m-j}{j}+\binom{m-1-j}{j-1})
\binom{j}{i+1-j} 
 +\sum_{j=0}^{m-1}(\binom{m-j}{j-1}+\binom{m-1-j}{j-2})
\binom{j}{i+1-j}$

 $= (-1)^{m}\binom{0}{i-m} 
 +\sum_{j=0}^{m}(\binom{m+1-j}{j}+\binom{m-j}{j-1})
\binom{j}{i+1-j}$

 $= -(-1)^{m+1}\binom{0}{i+1-(m+1)} 
 +\sum_{j=0}^{m+1-1}(\binom{m+1-j}{j}+\binom{m+1-j-1}{j-1})
\binom{j}{i+1-j}$

\noindent
and

\noindent
\hspace*{1.4cm} $\binom{m+1}{i+1} = \binom{m}{i+1} +\binom{m-1}{i} 
 +\binom{m-1}{i-1}$ 

 $= (-1)^{m}\binom{0}{i+1-m} -(-1)^{m}\binom{0}{i+1-m}
 -(-1)^{m}\binom{0}{i-m} 
 +\sum_{j=0}^{m-1}\binom{m-1-j}{j}(\binom{j+1}{i+1-j}+
\binom{j}{i-j})$ 

\noindent
\hspace*{1.0cm}
 $+\sum_{j=0}^{m-2}\binom{m-2-j}{j}(\binom{j+1}{i-j} 
+\binom{j}{i-1-j}) 
 +\sum_{j=0}^{m-2}\binom{m-2-j}{j}(\binom{j+1}{i-1-j} 
+\binom{j}{i-2-j})$

 $= (-1)^{m+1}\binom{0}{i-m} 
 +\sum_{j=0}^{m-1}\binom{m-1-j}{j}(\binom{j+1}{i+1-j} 
+\binom{j}{i-j} 
 +\sum_{j=0}^{m-2}\binom{m-2-j}{j}(\binom{j+2}{i-j} 
+\binom{j+1}{i-1-j})$

 $= (-1)^{m+1}\binom{0}{i-m} 
 +\sum_{j=0}^{m-1}(\binom{m-1-j}{j}(\binom{j+1}{i+1-j} 
+\binom{j}{i-j}) 
 +\sum_{j=0}^{m-1}\binom{m-1-j}{j-1}(\binom{j+1}{i+1-j}
+\binom{j}{i-j})$

 $= (-1)^{m+1}\binom{0}{i-m} 
 +\sum_{j=0}^{m}\binom{m-j}{j}(\binom{j+1}{i+1-j} 
+\binom{j}{i-j})$ 

 $= (-1)^{m+1}\binom{0}{i+1-(m+1)} 
 +\sum_{j=0}^{m+1-1}\binom{m+1-j-1}{j}(\binom{j+1}{i+1-j} 
+\binom{j}{i-j})$. 

\noindent
Thus (1.9) is proved by the induction with respect to  $n$. 
\hspace{4.9cm} q.e.d.

\vspace*{6ex}

\noindent
(2.0)  (Steenrod [2])
 \begin{it} Let $p$  be a prime, and $m$ and $n$ non-negative 
integers. Suppose that $m =$ $\sum_{j=0}^{N}a_{j}p^{j}$ and 
 $n =$ $\sum_{j=0}^{N}b_{j}p^{j}$, where $a_{j}$ and $b_{j}$ 
 are non-negative integers with $a_{j}\leq p-1$ and $b_{j}\leq p-1$ 
 $(0\leq j\leq N)$. Then
$$\binom{m}{n} \equiv 
 \prod_{j=0}^{N}\binom{a_{j}}{b_{j}} \pmod{p}.$$ \end{it} 

\vspace*{2ex}

Proof. \hspace{.1cm} Let $i$ be an integer with $0 < i < p$. Then
$$\binom{p}{i} = \frac{p(p-1)\cdots (p-i+1)}{1\cdot 2\cdots i} 
\equiv 0 \pmod{p}.$$
Therefore, in the polynomial ring $\BZ_{p}[x]$, we have 
 $(1+x)^{p} =$ $1+x^{p}$.  It follows by induction on $j$ that 
 $(1+x)^{p^{j}} =$ $1+x^{p^{j}}$. Therefore
$$(1+x)^{m} = (1+x)^{\sum_{j=0}^{N}a_{j}p^{j}} 
= \prod_{j=0}^{N}(1+x)^{a_{j}p^{j}} = 
 \prod_{j=0}^{N}\sum_{s=0}^{a_{j}}\binom{a_{j}}{s}x^{sp^{j}}.$$
The coefficient of $x^{n} =$ $x^{\sum_{j=0}^{N}b_{j}p^{j}}$ 
 in the usual expansion of $(1+x)^{m}$ is $\binom{m}{n}$. But, 
 from the above expansion, we see that it is 
 $\prod_{j=0}^{N}\binom{a_{j}}{b_{j}}$. (2.0) follows. 
\hspace{4.4cm} q.e.d.

\vspace*{3ex}

\noindent
(2.1) (Kobayashi [1]) 
\begin{it} Let $p$  be a prime, and $m$, $n$, $k$ and 
 $s$ non-negative integers with $p^{s} \leq$ $k <$ $p^{s+1}$. 
 Suppose that $\binom{m}{i} \equiv$ $\binom{n}{i} \pmod{p}$ for 
 $1\leq$ $i\leq k$.  Then 

\noindent
\hspace*{6.1cm}
$m\equiv n \hspace{.2cm} \pmod{p^{s+1}}$. \end{it} 

\vspace*{2ex}

Proof. \hspace{.1cm} Suppose that $m = \sum_{j=0}^{N}a_{j}p^{j}$, 
 $n = \sum_{j=0}^{N}b_{j}p^{j}$ and 
 $i = \sum_{j=0}^{N}c_{i,j}p^{j}$ $(1\leq i\leq k)$, where 
 $a_{j}$, $b_{j}$ and $c_{i,j}$ are non-negative integers with 
 $a_{j}\leq$ $p-1$, $b_{j}\leq$ $p-1$ and $c_{i,j}\leq$ $p-1$ 
 $(1\leq i\leq k$, $0\leq j\leq N)$. Then we have 
 $\binom{m}{i}\equiv$ $\prod_{j=0}^{N}\binom{a_{j}}{c_{i,j}} \pmod{p}$ 
 and  $\binom{n}{i}\equiv$ $\prod_{j=0}^{N}\binom{b_{j}}{c_{i,j}}$ 
 (mod $p$)  for $1\leq$ $i\leq$ $k$.  It follows from the hypothesis 
 that we have $a_{j} =$ $b_{j}$ for $0\leq$ $j\leq$ $s$; that is, 
 $m\equiv$ $n \pmod{p^{s+1}}$. \hspace{10.1cm} q.e.d.

\vspace*{3ex}

{\bf Definition 2.2.} Let $p$ be a prime, and $s$ a positive 
integer.  Then $\nu_{p}(s)$ denotes the exponent of  $p$  in the 
prime power decomposition of  $s$.  

\vspace*{3ex}

\noindent
(2.3) \begin{it} Let $p$  be an odd prime.  

\noindent
$(1)$ \hspace{.1cm} Let $r$, $k$ and  $j$ be integers with 
 $r > 0$ and  $k\equiv$ $j\pmod{p}$.  Then 

\noindent
\hspace*{4.4cm}
 $k^{r} -j^{r} \equiv$ $r(k-j)j^{r-1} \hspace{.2cm} 
 \pmod{p^{\nu_{p}(r)+2}}$.  

\noindent
$(2)$ \hspace{.1cm} Let  $r$  and  $k$  be integers with  
 $r > 0$,  $r \equiv$ $0 \pmod{(p-1)}$  and  $k\not\equiv$ 
 $0 \pmod{p}$.  Then 

\noindent
\hspace*{4.5cm}
 $k^{r}-1\equiv$ $r(1-k^{p-1}) \hspace{.2cm} \pmod{p^{\nu_{p}(r)+2}}$. 
 \end{it} 

\vspace*{2ex}

Proof. \hspace{.1cm} (1) \hspace{.1cm} Since  $k\equiv j \pmod{p}$, 
 we have 

\noindent
\hspace*{4.4cm} $k^{r}-j^{r} = (k-j)\sum_{i=0}^{r-1}k^{i}j^{r-i-1}$ 

\noindent
\hspace*{5.8cm} $\equiv (k-j)\sum_{i=0}^{r-1}j^{r-1} \hspace{.2cm} 
 \pmod{p^{2}}$ 

\noindent
\hspace*{5.8cm} $= r(k-j)j^{r-1}$.  

\noindent
This proves (1) for the case $\nu_{p}(r) = 0$.  Moreover

\noindent
\hspace*{.5cm} $\sum_{i=0}^{p-1}(k^{r})^{i}(j^{r})^{p-i-1} \equiv 
 \sum_{i=0}^{p-1}(r(k-j)j^{r-1}+j^{r})^{i}(j^{r})^{p-i-1} 
\hspace{3.5cm} \pmod{p^{2}}$ 

\noindent
\hspace*{3.9cm} $\equiv (j^{r})^{p-1}+ \sum_{i=1}^{p-1}
(ir(k-j)j^{r-1}(j^{r})^{i-1}+(j^{r})^{i})(j^{r})^{p-i-1} 
\hspace{.2cm} \pmod{p^{2}}$ 

\noindent
\hspace*{3.9cm} $= (p(p-1)/2)r(k-j)j^{r-1}(j^{r})^{p-2}
+p(j^{r})^{p-1}$ 

\noindent
\hspace*{3.9cm} $\equiv p(j^{r})^{p-1} \hspace{1.2cm} \pmod{p^{2}}$.   

\noindent
Assume that

\noindent
\hspace*{4.4cm}  $k^{r} -j^{r} \equiv 
 r(k-j)j^{r-1} \hspace{.2cm} \pmod{p^{\nu_{p}(r)+2}}$.  

\noindent
Then we have

\noindent
\hspace*{3.4cm} $k^{pr}-j^{pr} = (k^{r}-j^{r})
\sum_{i=0}^{p-1}(k^{r})^{i}(j^{r})^{p-i-1}$ 

\noindent
\hspace*{5.1cm} $\equiv r(k-j)j^{r-1}p(j^{r})^{p-1} \hspace{.2cm} 
 \pmod{p^{\nu_{p}(r)+3}}$ 

\noindent
\hspace*{5.1cm} $= pr(k-j)j^{pr-1}$.  

\noindent
Thus (1) is proved by the induction with respect to 
 $\nu_{p}(r)$. 

 (2) \hspace{.1cm} Since $k^{p-1} \equiv 1 \pmod{p}$ 
 for each  $k$  prime to  $p$, we have 

\noindent
\hspace*{3.1cm} $k^{r}-1 = (k^{p-1})^{r/(p-1)} - 1^{r/(p-1)}$ 

\noindent
\hspace*{4.3cm} $\equiv (r/(p-1))(k^{p-1}-1) \hspace{1.4cm} 
 \pmod{p^{\nu_{p}(r)+2}}$ 

\noindent
\hspace*{4.3cm} $\equiv (1-p)(r/(p-1))(k^{p-1}-1) \hspace{.2cm} 
 \pmod{p^{\nu_{p}(r)+2}}$ 

\noindent
\hspace*{4.3cm} $= r(1 - k^{p-1})$. \hspace{8.1cm} q.e.d.  

\vspace*{3ex}

\noindent
(2.4) \begin{it} Let $r$, $k$, $i$  and  $s$  be integers with 
  $i\geq$ $2$, $k\equiv$  $\pm 1 \pmod{2^{i}}$,  $r > 0$ and 
 $\nu =$ $\nu_{2}(r) \geq$ $s\geq$ $1$.  Then we have \end{it}  

\noindent
(1) \hspace{2.1cm} $k^{r} -1\equiv (k^{2^{\nu}}-1)(r/2^{\nu})$ 
 \hspace{1.1cm} $\pmod{2^{2\nu +2i}}$.  

\noindent
(2) \hspace{2.8cm} $k^{r}\equiv 1$ 
 \hspace{3.6cm} $\pmod{2^{\nu +i}}$.  

\noindent
(3) \hspace{2.1cm} $k^{r} -1\equiv (k^{2^{s}}-1)(r/2^{s})$ 
 \hspace{1.1cm} $\pmod{2^{\nu +s+2i-1}}$.  

\vspace*{2ex}

Proof. \hspace{.1cm} (1) \hspace{.1cm} Since  $k^{2}\equiv 1 
 \pmod{2^{i+1}}$,  we have 

\noindent
\hspace*{4.5cm} $k^{r}-1 = (k^{2}-1)\sum_{l=1}^{r/2}(k^{2})^{l-1}$ 

\noindent
\hspace*{5.7cm} $\equiv (k^{2}-1)(r/2) \hspace{.2cm} 
 \pmod{2^{2i+2}}$.  

\noindent
This proves (3) for the case $s = \nu = 1$.  Assume that

\noindent
\hspace*{4.5cm}  $k^{r} - 1 \equiv 
 (k^{2}-1)(r/2) \hspace{.2cm} \pmod{2^{\nu +2i}}$.  

\noindent
Then we have

\noindent
\hspace*{2.9cm} $k^{2r}-1 = (k^{r}-1)(k^{r}+1)$ 

\noindent
\hspace*{4.3cm} $\equiv (k^{2}-1)(r/2)(k^{r}+1) \hspace{2.1cm} 
 \pmod{2^{\nu +2i+1}}$  

\noindent
\hspace*{4.3cm} $\equiv (k^{2}-1)(r/2)(2+(k^{2}-1)(r/2)) 
 \hspace{.2cm} \pmod{2^{2\nu +3i}}$  

\noindent
\hspace*{4.3cm} $\equiv (k^{2}-1)(2r/2) \hspace{3.4cm} 
 \pmod{2^{2\nu +2i}}$.  

\noindent
Since  $\nu \geq 1$, this implies 

\noindent
\hspace*{4.3cm} $k^{2r}-1 \equiv (k^{2}-1)(2r/2) \hspace{.2cm} 
 \pmod{2^{\nu +1+2i}}$.  

\noindent
Thus the case  $s = 1$  of (3) is proved by the induction with 
 respect to  $\nu$.  This implies (2).  In particular, we have 
 $k^{2^{\nu}} \equiv$ $1 \pmod{2^{\nu + i}}$.  This implies 

\noindent
\hspace*{4.4cm} $k^{r}-1 = (k^{2^{\nu}}-1)
\sum_{l=1}^{r/2^{\nu}}(k^{2^{\nu}})^{l-1}$ 

\noindent
\hspace*{5.6cm} $\equiv (k^{2^{\nu}}-1)(r/2^{\nu}) \hspace{.2cm} 
 \pmod{2^{2\nu +2i}}$.  

\noindent
This proves (1), and hence (3) for the case  $\nu = s$.  Assume 
 that $k^{r}-1 \equiv$ $(k^{2^{s}}-1)(r/2^{s})$
 (mod $2^{\nu +s+2i-1}$).  Since  $k^{2^{s}} \equiv$ 
 $1 \pmod{2^{s+i}}$ by (2), we have 

\noindent
\hspace*{2.9cm} $k^{2r}-1 = (k^{r}-1)(k^{r}+1)$ 

\noindent
\hspace*{4.3cm} $\equiv (k^{2^{s}}-1)(r/2^{s})(k^{r}+1) 
 \hspace{2.5cm}  \pmod{2^{\nu +s+2i}}$  

\noindent
\hspace*{4.3cm} $\equiv (k^{2^{s}}-1)(r/2^{s})
(2+(k^{2^{s}}-1)(r/2^{s}))  \hspace{.2cm} \pmod{2^{2\nu +s+3i-1}}$  

\noindent
\hspace*{4.3cm} $\equiv (k^{2^{s}}-1)(2r/2^{s}) \hspace{3.7cm} 
 \pmod{2^{2\nu +2i}}$.  

\noindent
Since  $\nu \geq s \geq 1$, this implies 

\noindent
\hspace*{4.1cm} $k^{2r}-1 \equiv (k^{2^{s}}-1)(2r/2^{s}) 
 \hspace{.2cm}  \pmod{2^{\nu +1+s+2i-1}}$.  

\noindent
Thus (3) is proved by the induction with respect to  $\nu$.  
\hspace{5.1cm} q.e.d.  

\vspace*{6ex}

 \begin{thebibliography}{[1]} 

 \bibitem[1]{kobayashi1} 
  T.~Kobayashi: 
  {\it Stable homotopy types of stunted lens spaces} mod $p^{r}$, 
  Mem.\ Fac.\ Sci.\ Kochi Univ.\ (Math.)\ {\bf 15} (1994), 9--14.  

 \bibitem[2]{steenrod1} 
  N.~E.~Steenrod: 
  Cohomology operations, 
  Princeton University Press, 1962.  

 \bibitem[3]{tamamura1} 
  A.~Tamamura: 
  {\it $J$-groups of the suspensions of the stunted lens spaces} mod $2p$, 
  Osaka J.\ Math.\ {\bf 30} (1993), 581--610.  
 \end{thebibliography}
\noindent
%==308==
\end{document}


【コメント】

AMS-LaTeXが手元にないので私はコメントができないのですが、ぜひ ご感想を送ってください。


 数学の美しさへもどる

 数学の部屋へもどる